Mutual Information Bounds via Adjacency Events
نویسندگان
چکیده
منابع مشابه
Mutual information challenges entropy bounds
We consider some formulations of the entropy bounds at the semiclassical level. The entropy S(V ) localized in a region V is divergent in quantum field theory (QFT). Instead of it we focus on the mutual information I(V,W ) = S(V ) + S(W ) − S(V ∪W ) between two different non-intersecting sets V and W . This is a low energy quantity, independent of the regularization scheme. In addition, the mut...
متن کاملLower bounds on mutual information.
We correct claims about lower bounds on mutual information (MI) between real-valued random variables made by Kraskov et al., Phys. Rev. E 69, 066138 (2004). We show that non-trivial lower bounds on MI in terms of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance of MI under reparametrizations, because linear correlations are not in...
متن کاملMutual Information Rate and Bounds for It
The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabiliti...
متن کاملCorrelation Distance and Bounds for Mutual Information
The correlation distance quantifies the statistical independence of two classical or quantum systems, via the distance from their joint state to the product of the marginal states. Tight lower bounds are given for the mutual information between pairs of two-valued classical variables and quantum qubits, in terms of the corresponding classical and quantum correlation distances. These bounds are ...
متن کاملMeasuring Dependence via Mutual Information
Considerable research has been done on measuring dependence between random variables. The correlation coefficient [10] is the most widely studied linear measure of dependence. However, the limitation of linearity limits its application. The informational coefficient of correlation [17] is defined in terms of mutual information. It also has some deficiencies, such as it is only normalized to con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2016
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2016.2609390